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Nonparametric estimation of the correlation exponent
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The correlation exponent is widely utilized in experimental situations as an estimate of an attractor’s
fractal dimension. However, in the presence of noise, the slope of the correlation integral may increase
gradually, biasing dimension estimates. We propose a nonparametric statistical procedure for distin-

guishing the attractor from the noise process.

PACS number(s): 05.40.+], 47.25.Ae

I. INTRODUCTION

Because of its computational feasibility, the correlation
exponent [1,2] is widely utilized in experimental situa-
tions as an estimate of an attractor’s fractal dimension.
However, the observer function is often contaminated by
noise, causing the researcher to distinguish between the
attractor and noise processes. Since noise will not ob-
scure the structure of the attractor at length scales
greater than the noise strength, calculation of the correla-
tion integral over a range of embedding spaces allows the
attractor to be differentiated from the noise process [3].
The space-filling nature of the noise process segments the
correlation integral, producing a kink that must be
identified by the researcher. In practice, since noise grad-
ually increases the slope of the correlation integral, there
is not a unique kink point, and dimension estimates can
become contaminated. As a result, a variety of estimates
may be drawn from the same data, or alternatively, ex-
perimenter bias can enter, skewing an estimate toward
the researchers prior. We propose a nonparametric pro-
cedure for distinguishing the attractor from the noise
process. _

Noise can be modeled as an infinite-dimensional pro-
cess, while the deterministic process reconstructed by the
attractor is finite. The correlation integral maps a spatial
problem into pairs, ordered by scale, where the two mod-
els can be distinguished by the integral’s slope. Standard
techniques [4,5] for distinguishing between the means of
two candidate models suffer from the same shortcomings
as mentioned above. We implement a nonparametric
technique that tests for the stability of regression
coefficients over the domain of the correlation integral.
This inference requires no prior information other than
the sequencing of the data.
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II. CUMULATIVE SUM OF SQUARES TEST (REF. [6])

The correlation integral can be represented as segment-
ed linear models: a model for the attractor and the
higher-dimensional model for the noise process. In this
section, we discuss recursive estimation of the slope of
the correlation integral and introduce a nonparametric
procedure for distinguishing the underlying models.

We write the model for the correlation integral as

X, 0
0 X,

Y,
Y,

Y= = +u, (1)

P
B,
where Y is a T vector of y coordinates partitioned into
the m X1 and n X1 vectors ¥, and Y,, the X; are m X2
and n X2 matrices of dependent variables, with 1 in the
first column, the B; are 2X 1 vectors of coefficients with
slopes ), and B, and y is an independently distributed,
mean zero disturbance term with variance o2 For a
given m and n, there are exact test statistics for the hy-
pothesis H,: ,=8,. Our problem is to identify the
lengths of the subsamples.

The first step is to construct a series of recursive least
squares estimates of the coefficients of the correlation in-
tegral, treating the data as if they were generated by a
single model. Denote Y,=(y,,y;,...,y,) and
X/=(x, x3,...,%,), the first r observations on the
dependent and independent variables. The rth estimate
of the coefficient vector is

b,=(X,X,)"'X)Y, . @)

An updated estimate of E may be obtained recursively
from its previous estimate by

b,=b, ,+(X/X,) 'x,(»,—x/b,_)) . (3)
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The relation (3) is a Kalman filter iteration, where the
gain matrix is a time-varying linear function of the one-
period-ahead forecast error [7].

The principal advantage of this approach is that para-
metric assumptions about the densities of the underlying
populations are not necessary. The only property of the
data we will exploit will be the monotonicity of the
squared estimation errors; by converting them to order
statistics, we identify nonparametrically m and n, the
domains of the attractor and the noise process.

Formally, we test the hypothesis H,: 3;=/3,, using an
analysis of the residuals from the recursive estimates pro-
posed by Brown, Durbin, and Evans [6]. Let v, be the
out-of-sample forecast error for the (r —1)th estimate,
such that

U, =yr_£rIEr—l . (4)

Under H,, v, has mean zero and variance 0°d?, where
d,=[1+x,(X, X, ) 'x,]'"% The cumulative stand-
ardized prediction error is w,=(v,/d,). The cumulative

sum of squares (CSS) is defined as

S, =3 (w,)*. (5)
=3
Under the null hypothesis, S, is equal to the residual sum
of squares, yielding a recursive relation for the CSS,
J

C,y(€)= lim (1/N?){number of (j,k)|[(x;—x;)*+ .

N— o

for d=2,3,..., . As €—0, C;(€)~¢€", where v, the
correlation exponent, is a lower bound estimate of the
Hausdorff dimension [1]. Thus, for small €,

In,C,(€)= Inyk +v Inye , 9)

where k is a constant. Since noise will not obscure the
fractal structure of the attractor at length scales greater
than the noise strength and the € are ordered,

_ 31n,Cyle)

= 1
d1nye Vo (10)
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and f3,; is an estimate of the dimension of the noise pro-
cess. In addition, as the embedding space becomes large,
the change in 3, provides a lower bound estimate of Kol-
mogorov entropy [2,9].

Since the correlation integral may become distorted at
large values of €, sequential application of the CSS test
over the remaining »n +1 observations allows these dis-
torted segments, as well as the noise scale, to be detected.
The correlation exponent is identified by the segment of
the correlation integral whose estimated slope becomes
invariant to embedding.

IV. APPLICATION

To demonstrate our procedure, we study the Mackey-
Glass delay differential equation [10], parametrized as
follows:

()= ax(t—T)

_axU T ),
I+ [x(t—m]0 F

a=0.2, b=0.1. (11)
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S, =S, _+tw?. 6

From (6), the CSS increases monotonically with ». After
scaling S, by S,, . ,, we have an ordered sample on the
(0,1) interval. Under H,, the statistic

r m-+n
5= W)’/ 3 (w,)*=S,/S,, +, (7
t=3 t=3

will have the B distribution with mean equal to
(t—2)/(m +n —2). Tests of the null hypothesis are
based on the symmetric statistic P=(¢t—2)/(m
+n —2)*c,, where ¢, corresponds to a specific critical
value based on calculations by Durbin [8].

This test is robust since distribution of the order statis-
tics is independent of the cumulative distribution func-
tion of the model population. If the true data generating
process is a single linear model, s, will not deviate
significantly from its mean. Alternatively, if the slope in
the noise domain is steeper, 3, > 3, then there will be a
sequence of large forecast errors. A greater portion of
the CSS comes from the noise domain, causing P to cross
Durbin’s lower boundary.

III. IMPLEMENTATION

Given an observed time series {x,x,,...,xy}, the
correlation integral [2,9] is defined as
..+(Xj+d_1_xk+d_1)2]l/2<6} (8)

[
Following the appendix to [1], we approximate Eq. (11)
by a set of 2400 difference equations and generate time
series of the form {x (¢ +i7),i=1,...,25.000}. We esti-
mate correlation exponents for series with delay times
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FIG. 1. Correlation integral and estimated slope coefficients
(Mackey-Glass attractor, 7=17).
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7=17, 23, 30, and 100. Correlation integrals are calcu-
lated using the binning technique described in [1] with
the bin width set such that there are approximately 100
points over the domain of each correlation integral.

To highlight our procedure’s ability to distinguish the
attractor domain from the noise domain, we add a uni-
formly distributed error term with range +0.4X 1072 to
the time series corresponding to delay time r=17. Fig-
ure 1 shows the calculated correlation integrals and es-
timated slope coefficients for embedding dimensions 3, 4,
5, and 6. The space-filling nature of the noise process
segments the correlation integral; specifically, increases in
embedding dimension identify the kink in the correlation
integral. At e=2"", estimated slope coefficients begin to
increase with embedding and, for € less than 278 the es-
timated slope coefficients clearly vary with embedding di-
mension. Above this length scale, the estimated correla-
tion exponent v=1.939 is identified by the common scal-
ing region in the domain (—5.3, —4.0).

In addition to noise, entropy may cause significant
variation in the slope of the correlation integral over its
domain. If entropy is positive, correlation integrals may
shift downward as embedding is increased. Consequent-
ly, correlation integrals may be distorted at large values
of €. The following exercise demonstrates this. For a de-
lay time 7=23, with no added noise, Fig. 2(a) plots
Alog,C (€)/Alog,e over the domain of the correlation in-
tegral and Fig. 2(b) shows the corresponding estimated
slope coefficients. Even though there is significant varia-
tion in the estimated slope coefficients, a common scaling
region is identified in the domain (—6.4,—5.3). Table I
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FIG. 2. (a) Slope of correlation integral and (b) estimated
correlation exponent (Mackey-Glass attractor, 7=23).
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TABLE I. Estimated correlation exponent Mackey-Glass at-
tractor.

Embedding Estimated Domain
dimension correlation exponent (log,)

(r=17)

3 1.901+0.003 —5.6 to —4.0

4 1.924+0.004 —5.6 to —3.8

5 1.935+0.005 —5.6 to —4.0

6 1.939+0.004 —5.3 to —4.0
(r=23)

4 2.484+0.014 —6.5to —5.4

5 2.474+0.008 —6.5 to —5.4

6 2.482+0.010 —6.4 to —5.3

7 2.496+0.015 —6.4 to —5.3
(r=30)

4 2.775+0.014 —6.4 to —5.3

5 2.841£0.010 —6.4 to —5.3

6 2.869+0.016 —6.4 to —5.3

7 2.897+0.018 —6.2 to —5.1
(r=100)

10 4.887+0.084 —0.8 to —0.2

12 4.963+0.208 —0.2 to —0.7

14 6.864+0.008 —0.6 to —0.1

15 6.993+0.130 —0.3 to —0.4

presents the estimated correlation exponents and the
identified domains for all series. In each case, the esti-
mate is consistent with that found in [1].

As a final example, our procedure is tested using exper-
imental data. We study Couette-Taylor flow data with
Reynolds number R =12.9R_, where R, is the Reynolds
number where Taylor vortex flow appears. From [11],
the data are characterized by chaotic flow, the onset of
which occurs at R /R, =11.71+0.2. In order to test our
procedure’s ability to identify a common scaling region
using noisy data, we use a sample of data containing a
significant amount of noise.

We reconstruct the attractor using a delay equal to
0.25 mean orbital time, corresponding to the first
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FIG. 3. Estimated correlation exponent (Couette-Taylor flow
data).
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TABLE II. Estimated correlation exponent Couette-Taylor
flow data.

Embedding Estimated Domain

dimension correlation exponent (logo)
3 1.196+0.048 0.43 to 0.28
4 1.617+0.059 0.46 to 0.31
5 2.202+0.074 0.49 to 0.10
6 2.53940.027 0.49 to 0.10
7 2.469+0.014 0.40 to 0.07
8 2.516+0.044 0.16 to 0.88

minimum of the mutual information function. From a
datafile of 32 768 observations, we sample approximately
25 points per orbit.

Figure 3 shows the estimated slope coefficients for
embedding dimensions M =3, 4, 5, 6, 7, and 8. The noise
domain is clearly identified for € less than 107%!5, Above
this noise scale, the estimated slope coefficients are invari-
ant to embedding for M = 6. The estimated correlation
exponent, v=2.516+0.044 is identified by a common
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scaling region in the domain (0.07,0.40). Table II
presents the estimated slope coefficients, over this
domain, for each embedding. These estimates are con-
sistent with those reported in [11].

V. SUMMARY

The correlation integral has become a standard method
for estimating the dimension of strange attractors using
experimental data. Noise partitions the integral into two
segments that must be identified by the experimenter.
We develop a nonparametric statistical procedure for
identifying the attractor and noise segments. Using this
procedure, we produce estimates for the Mackey-Glass
delay differential equation and Couette-Taylor flow data
that are consistent with the existing literature.
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